Search results for " 54E52"

showing 3 items of 3 documents

Covering by discrete and closed discrete sets.

2008

Say that a cardinal number $\kappa$ is \emph{small} relative to the space $X$ if $\kappa <\Delta(X)$, where $\Delta(X)$ is the least cardinality of a non-empty open set in $X$. We prove that no Baire metric space can be covered by a small number of discrete sets, and give some generalizations. We show a ZFC example of a regular Baire $\sigma$-space and a consistent example of a normal Baire Moore space which can be covered by a small number of discrete sets. We finish with some remarks on linearly ordered spaces.

Open setMathematics::General TopologyBaireBaire measure01 natural sciencesComplete metric spaceDiscrete setFOS: MathematicsProperty of Baire0101 mathematicsDispersion characterMoore spaceMathematicsMathematics - General TopologyDiscrete mathematicsMoore space (topology)σ-space010102 general mathematicsGeneral Topology (math.GN)Baire spaceBaire property010101 applied mathematicsMetric spaceMathematics::Logic54A25 54E52Baire category theoremSettore MAT/03 - GeometriaGeometry and TopologyLOTSsigma-space
researchProduct

P-spaces and the Volterra property

2012

We study the relationship between generalizations of $P$-spaces and Volterra (weakly Volterra) spaces, that is, spaces where every two dense $G_\delta$ have dense (non-empty) intersection. In particular, we prove that every dense and every open, but not every closed subspace of an almost $P$-space is Volterra and that there are Tychonoff non-weakly Volterra weak $P$-spaces. These results should be compared with the fact that every $P$-space is hereditarily Volterra. As a byproduct we obtain an example of a hereditarily Volterra space and a hereditarily Baire space whose product is not weakly Volterra. We also show an example of a Hausdorff space which contains a non-weakly Volterra subspace…

Pure mathematicsProperty (philosophy)Volterra spaceprimary 54E52 54G10 secondary 28A05General MathematicsHausdorff spaceGeneral Topology (math.GN)Mathematics::General TopologyBaire spaceBaire spacedensity topology.Volterra spaceNonlinear Sciences::Exactly Solvable and Integrable SystemsIntersectionProduct (mathematics)P-spaceFOS: MathematicsQuantitative Biology::Populations and EvolutionSubspace topologyMathematicsMathematics - General Topology
researchProduct

Homogeneous actions on the random graph

2018

We show that any free product of two countable groups, one of them being infinite, admits a faithful and homogeneous action on the Random Graph. We also show that a large class of HNN extensions or free products, amalgamated over a finite group, admit such an action and we extend our results to groups acting on trees. Finally, we show the ubiquity of finitely generated free dense subgroups of the automorphism group of the Random Graph whose action on it have all orbits infinite.

Random graphFinite group20B22 (primary) 20E06 20E05 05C63 54E52 (secondary)Group Theory (math.GR)Homogeneous actions16. Peace & justicegroups acting on trees[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR]Action (physics)CombinatoricsMathematics::Group TheoryFree productHomogeneousBaire category theoremFOS: MathematicsDiscrete Mathematics and CombinatoricsCountable setBaire category theoremfree groupsGeometry and TopologyFinitely-generated abelian groupMathematics - Group TheoryMSC: 20B22 (primary); 20E06 20E05 05C63 54E52 (secondary)random graphMathematicsGroups, Geometry, and Dynamics
researchProduct